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A B S T R A C T

Open Data has crossed the chasm of technical feasibility, with Semantic
Web technologies well matured by now. However, harnessing it can still be an
impervious adventure for users not intimately familiar with the surrounding
processes and technologies.

We present a lifecycle management framework which glues together the
formalities of the Semantic Web with the loose ends of Open Data. From a
mere description of data sources, we collect and integrate heterogeneous data
sets into a Semantic Web technology stack.

1 background

The Open Data movement has proven its point sufficiently and reached the
Peak of Inflated Expectations in the Gartner Hype Cycle [1]. The scientific com-
munity around the technologies that power Open Data is thriving and well-
established [2]: The Extensible Markup Language (XML) has seen widespread
adoption,1 the Resource Description Framework (RDF) is adopted as a Standards
Specification,2 ontologies spring up like mushrooms.3

Still, the community repeatedly identifies not technical matters but pro-
cesses to be lacking4 for end users— citizens, journalists, policy makers, or
scientists —looking to utilize the huge amount of information buried in Open
Data. Existing solutions frequently end up producing information silos; the
solution space is more often than not difficult to explore for those unfamiliar
with Semantic Web technologies. We have identified a number of problem
domains which, currently, are tedious to instrumentalize:

D iscovery For exploration of meta data catalogs, the community currently
sees uptake of the Comprehensive Knowledge Archive Network (CKAN).
Ignoring one-off solutions,5 CKAN seems to be the only contender. Soft-
ware as a Service offerings such as Socrata are emerging.

1Research suggests that it is the most popular content type on the Web right after images and
HTML pages. [3]

2Jeremy J. Carroll and Graham Klyne. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation. World Wide Web Consortium, Feb. 2004. url:
http://w3.org/TR/2004/REC-rdf-concepts-20040210.

3In 2011, there have been at least 1,500 ontologies indexed by the Semantic Web search engine
Swoogle. [4, p. 7]

4The action items proposed at Berlin Open Data Day 2012 [5] are hardly technical at all.
5A common misconception is that Open Data catalogs are, in itself, a novel idea. Public

authorities keep complaining that they have built specialized information catalogs, such as
PortalU (http://portalu.de/) for environmental monitoring, themselves long ago.
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Storage Database layers are a completely different story — there are at
least two large competing libraries: OpenRDF Sesame and Apache Jena.
Underlying technologies, so-called triplestores, are aplenty and tend to
build upon traditional SQL databases (e.g., Sesame RDBMS Sail, Jena
SDB, or Virtuoso), file serializations (e.g., N-Triples and RDF/XML), or
proprietary RDF representations (e.g., OWLIM and Sesame Native).

Delivery While the SPARQL Protocol and RDF Query Language6 has its foot
wide in the door, there are several implementations of it. Sesame ships
with the Sesame Server which can be readily served by Apache Tomcat;
Virtuoso Universal Server is another strong contestant in that area.

Sensemaking A very broad field in itself, we would not expect there to be
a single answer to a multitude of tasks such as visualization, search, and
analytics; such thing does and can not exist in the traditional database
world either. For our work we will discuss the Information Workbench
because it is (a) a Web platform and (b) supports collaborative authoring.

(For a list of project homepages, see Appendix A.)

Catalog 

Dataset 

Distribution 

***
In Open Data, the notion of datasets has established as a fundamental unit

of measure. While there is still no common understanding what it entails, the
consensus is basically that it is a defined, related, and closed set of entities
and relationships.7 As such, a dataset has no intrinsic representation. That’s
where distributions come into play: A distribution is a single serialization of
a dataset.

A related set of datasets is commonly grouped into a catalog, which is an
even fuzzier concept. Commonly, the source or the vendor of the dataset is
used for catalogization.8

2 vision

Switching contexts is hard. We strive to offer a one-stop solution which cov-
ers all of the aforementioned activities and integrates a full Semantic Web
technology stack. While we think a stock solution for working with Open

6Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C Recom-
mendation. World Wide Web Consortium, Jan. 2008. url: http://w3.org/TR/2008/REC-
rdf-sparql-query-20080115.

7Geographic or chronologic proximity, but sometimes pragmatic considerations such as
filesize, are common bounds.

8For the Linked Open Data Cloud, grouping otherwise seemingly unrelated datasets into a
single LOD catalog makes sense and is legit too.
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Data is sorely needed we understand service providers might want to replace
individual components and thus tried to build the framework as modular as
feasible.

From the problem domains outlined in Section 1 we can derive tasks for a
consolidated and automated workflow:

Collect (Discovery) In order to learn about which datasets are available we
need to crawl catalogs and federate them in a central repository. We discuss
a unified schema for metadata storage in Section 3.

Download (Storage) When a set of datasets has been selected, those need to be
retrieved from external sources.

Populate (Storage) Working with data becomes much easier if it blends seam-
lessly into a Semantic Web technology stack. It must be transformed into RDF
and loaded into a triplestore; we will use Sesame because it offers a pluggable
backend mechanism —so-called Sails— which supports those triplestores
which performed best in large deployments [6].

D igest (Sensemaking) With data replicated at our site, we can dissect it at our
discretion (f.ex. to calculate histograms). Using the Silk framework9 we link
datasets with each other [7]; ad-hoc SPARQL queries can contribute vital
statistics about the datasets.

Setup (Delivery) Finally, the data needs to be served through SPARQL to be
leveraged by other Semantic Web technologies. Sesame comes with its Sesame
Server (and a user-facing administration tool called the Sesame Workbench) and
can be deployed through standard Tomcat setups.

***
Tools like the data package manager (dpm) already handle significant portions
of that very workflow (namely, it collects metadata from an index and fetches
data packages through HTTP) but cease to offer whole lifecycle management
solutions. A centralized solution like the LOD Cache is potentially harmful:
Single points of failure do not contribute to the wellbeing of the overall system.

For our purposes we ignore data quality wholesale; we merely want to
resolve integrative problems present in Open Data today.

U S E D D ATA S E T S

For the purposes of this paper we have chosen some datasets which we believe
should cover a representative range of different use cases and challenges.

9Julius Volz et al. “Silk – A Link Discovery Framework for the Web of Data”. In: LDOW2009.
Madrid, Spain, Apr. 2009. url: http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf.
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Dataset Homepage Fetched on
Eurostat http://estatwrap.ontologycentral.com/ 2012/05/14

Worldbank http://data.worldbank.org/ 2012/05/15

Data.gov http://explore.data.gov/ 2012/05/15

LOD Cloud http://thedatahub.org/group/lodcloud/ 2012/05/21

Table 1: Sources used in our test runs

The Data Hub is a CKAN setup and the canonical host for the Linked Open
Data Cloud10. The LOD Cloud comprises over 300 datasets covering media,
geography, publications, government, life sciences, user-generated content,
and cross-domain matters which are readily linked between each other. While
CKAN is perfectly capable of hosting data sets as well, it only points to remote
files from the LOD Cloud.

Eurostat, while freely available as comma-separated values (CSV) files,
has been handily wrapped by OntologyCentral’s Estatwrap to produce RDF
output. It also adds links to the LOD Cloud to the 5,000 statistics on Europe.

Worldbank offers its own proprietary REST API with XML and JSON output
for World Development Indicators on developing and high-income economies
which it hosts itself. They are provided under a permissive license.

Data.gov is the US Federal Executive Branch’s Open Data page hosted by
Socrata. It encompasses about 4,500 datasets, in large parts hosted remotely.

3 schema

It is hard to come up with a universal schema for all catalogs as they all
provide distinct sets of metadata. We need a least common denominator of
metadata to fuel our tool and fetch datasets automatically, though. Every
catalog is free to augment the standardized subset of metadata with its in-
tricate information points itself. For interoperability with the Information
Workbench, the metadata must be represented in RDF.

3 .1 Dataset Vocabulary Primer
Fraunhofer FOKUS recommends a minimum set of required metadata: [5,
p. 157f]

• title
• description
• publishing authority (author)

• format
• language
• license

10See http://lod-cloud.net/ for details.
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CKAN established in its best practices [8, p. 11] that the Data Catalog Vocab-
ulary (DCAT) should be used for general description of datasets; the Informa-
tion Workbench has used that standard in the past, too.11

The types identified in Section 1 are consistent with DCAT’s classes: Dataset,
Distribution and Catalog. [9] It does not force any particular meaning upon
them but defines a minimum subset of predicates useful for modeling their
relationships. Additionally, it requires that Datasets must be “published or
curated by a single source” and “available. . . in one or more formats.” It de-
fines certain types of distributions depending on their access method (namely
Download, WebService and Feed.)

The Vocabulary of Interlinked Datasets (VoID) in turn requires that a dataset
is a “set of RDF triples.” [10] With that restriction in place it can partition,
interlink and measure them.

3 .2 Ontology

dcat:Catalog
rdfs:label (rdfs:Literal)

dcat/void:Dataset

dcterms:description (rdfs:Literal)
dcat:Distribution

dcterms:modified (xsd:date)
dcterms:created (xsd:date)

foaf:homepage (foaf:Document)

rdfs:label (rdfs:Literal)

dcterms:license (dcterms:LicenseDocument)

dcterms:creator (foaf:Agent)

dcterms:publisher (foaf:Agent)

dcterms:language (dcterms:LinguisticSystem)

dcat:accessURL (rdfs:Literal)
dcterms:format (rdfs:Literal)

dcat:dataset dcat:distribution

dcterms:date (xsd:date)
rdfs:label (rdfs:Literal)

1

*

*

1

Figure 1: Entities and relationships in our Ontology [8, p. 12]. Required predicates are
highlighted, those already present in the DCAT Specification are shaded.

In our representation, we basically use the datasets defined in DCAT with
a grain of VoID; our schema is “DCAT conformant” as per the W3C Editor’s
Draft [9]. For better standards compliancy, we fall back to standard RDF pred-
icates where possible and the widespread Dublin Core Terms12 vocabulary
for general information and source relationships between distributions.

For the purposes of automating the download and population of datasets,
we distinguish three types of distributions: Remotes are distributions stored at
third parties. These come directly from the metadata suppliers in the collection
step. When we download them they become local dumps constituted by the
file protocol; they should not differ from their originating remote with

11Check out http://iwb.fluidops.com/resource/dcat:Dataset.
12http://dublincore.org/documents/dcmi-terms/
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http://dbpedia.org/current/all_languages.tar 
application/x-tar 

file://.../all_languages.tar 
application/x-tar 

file://.../dbpedia_3.5.1.owl.bz2 
? 

file://.../dbpedia_3.5.1.owl 
? 

file://.../dbpedia/ 
application/sesame-store 

http://localhost/dbpedia/ 
api/sparql 

download 

setup 

populate 

populate 

populate 

Figure 2: Different lifecycle stages of a distribution. The arrows are represented as
dcterms:source relationships in our schema.

regard to contents. They are finally imported into Sesame repositories which
are identified by the application/sesame-store MIME type.

We allow for easy provenance with explicit source links between each dis-
tribution.

The DCAT specification, as of the time of writing, specifies the dereference-
able access URL of a distribution as a literal instead of an URI. Not only does
the name disagree with that stipulation but the Working Group is at odds
about it as well.13 We have tried to cope with both interpretations.14

We want to leave room for storing multiple datasets in a single repository.
The Service Description Vocabulary15 can be used to express in which named
graph a distribution is saved in.

4 architecture

We have come up with a multi-layered architecture which (a) resembles our
schema described in Section 3, (b) fulfills all tasks described in Section 2,
and (c) satisfies both client- and API-style reuse (see 4.1). In this section, we

13http://dvcs.w3.org/hg/gld/raw-file/27735149f5e9c/dcat/index.html#
property--access-download

14This dramatically complicates SPARQL queries: Both need to be cast into their lexical form
using the SPARQL built-in str. In experiments with a simple equivalency query and a
bogus 100,000 triple store, this seems to incur an 8% overhead.

15Gregory Todd Williams. SPARQL 1.1 Service Description. W3C Working Draft. World Wide
Web Consortium, Jan. 2012. url: http : / / www . w3 . org / TR / sparql11 - service -
description/.
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describe the absolute bare minimum effort we needed to pertain to guide a
dataset through the whole lifecycle. For— partially critical —optimizations,
see Section 6.

For retrieving the metadata catalogs we have employed the Information
Workbench’s on-board means. It already provided a CKAN harvester which
uses the limited JSON interface. We have written providers for Semantic
CKAN [8, ch. 4.2], Eurostat, Worldbank, and Socrata. They comply with our
metadata schema and can be found in com.fluidops.iwb.provider.

Users are free to provide a minimal set of metadata manually as outlined
in Figure 1 and our tool readily copes with downloading it too.

4 .1 Two of a Kind
As described earlier, we feel the urge for a ready-to-use one-shot solution;
professionals and experimenters might wish to use their favorite tool or library
and only trigger certain aspects of the packaged workflow though. In order to
cater to expert and novice users alike we have written both a Web-style and
an Object-oriented programming interface.

The Web-style interface is a high-level way to command the framework.
It generally provides non-trivial compound calls such as downloadCatalog
or populateAll which return prepackaged statistics. For a full list of con-
venience methods, see edu.overlode.util.ConvenienceClient; for details
on the provided statistics confer Section 4.3.

Underneath rests the Object-oriented interface which closely resembles the
entities described by our ontology. It has a component for distributions and
one for datasets16.

Because we are usually confronted with large volumes of data, the frame-
work is lazy by default: If a distribution has already been materialized we
assert that data from a certain distribution is not a moving target — see Sec-
tion 6.7 for why that is a bold assertion. We can thus go and run the tool
incrementally. Restarting the tool and going from the last stable point (a meta-
data store commit) is, in practice, extremely useful to fix network hangups or
mere programming errors on our or a third-party vendor’s side.

Where possible we used bulk insertion instead of individual inserts.17

16Actually there are two parts to this: One component, Dataset, is capable of assessing a
dataset in terms of our schema — it is a Dumb Data Object with the capability to fetch all
related distributions. The Loader knows how to download and populate those.

17The org.openrdf.repository.RepositoryConnection method add supports streams and
files natively.
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4 .2 Data providers
As per our schema we know which Internet media type a file is supposed
to be in — this is, again, a bold assumption as we will discuss in Section 5

and 6.2. Based on that well-defined type we can dispatch program flow to a
specially crafted component— a provider —and let it process the downloaded
file.

Name Capabilities18 Technologies used
RDFXML rdf+xml Rio

RDF ntriples, turtle,
n3, trix, trig

Sesame

Archive tar, zip Commons Compress
CompressedFile gzip, bzip2 ditto

XML xml XPath, DOM 19

JSON20 json JSON in Java
CSV csv [11]

Table 2: Currently implemented providers in edu.overlode.impl

(For a list of project homepages, see Appendix A.)
Adding new providers is trivial: Providers just need to implement a method21

accepting a local file and insert their generated triples into an open repository
connection. For their convenience they are also handed a base URI (the doc-
ument root) and a source distribution. If they wish to delegate new files, say
extracted archive contents, back into the dispatching loop, they can yield a set
of files back to the caller at their discretion.

Providers can then register for those MIME types they can operate on. The
dispatcher orders providers by priority (first-come, first-served.) Distributions
are handled in that order, too.

18MIME subtypes in the “application” type
19These are mashed up in com.fluidops.iwb.provider.XMLProvider to provide a manual

mapping mechanism, a “mapping spec,” from XML schemas to RDF.
20As a proof of concept we have written a dedicated provider for Socrata’s JSON API, which

spews out domain-specific vocabulary. JSON, as such, ends up in a very generic represen-
tation when transformed to RDF. We feel that special-purpose providers — or a mapping
mechanism as used in the XML provider – is required to get anything remotely useful out
of JSON.

21List<File> handle(File dump, RepositoryConnection conn, String baseUri,
Distribution dist)
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The Information Workbench has the notion of providers as well. The down-
side of its implementation is that it does not support direct streaming into a
repository but needs to load all data into memory first.

4 .3 Generating statistics
With over 9,000 individual datasets in our collective sample, comprehensive
diagnostics are key. We can track consumed time, quantitative coverage, and
occurred errors.

All statistics are stored in RDF22, together with their parent distributions,
for inspection purposes.

real -time statistics The tool can take quite some time to run. We
have implemented means to examine live runs as an extension to Java’s
ThreadPoolExecutor. It stores which dataset and distribution is handled
by each thread and can present that information to callers.

Currently, the tool logs back a report every hour. An on-demand signal
handler, implemented through proprietary Sun APIs, eventually had to go
away as it did not fly with all JVM implementations. A possible optimization
would be interaction with running threads through some sort of API.

repository measurements VoID already developed SPARQL queries
which can measure the size and extent of an endpoint.23 Sesame’s built-in
hooks only allow for very limited measurements, namely the total number of
triples.

success metrics While it is trivial to come up with a Definition of Done
for distributions — did it run to completion without any exceptions? — it
is hardly sensible to use that very same definition transitively on datasets.
For datasets, success is no longer a binary but a fuzzy state where a single
distribution is not fatal.

Currently, we just allow datasets to show up in both figures: Successful and
failed datasets.

22as rdf:comment links
23http://code.google.com/p/void-impl/wiki/SPARQLQueriesForStatistics
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5 fault tolerance

In our experiments we have observed a lot of glitches24 which can be catego-
rized into the following error classes (roughly in order of appearance):

Transient network failure Fetching a resource might fail due to the net-
work being unreliable. A network link might not resolve, time out, or be down
for whatever reason. If a problem persists, it might indeed be a permanent
network failure. Sometimes, we hit a remote HTTP server but it replies with
an error code.25 Recovery from these errors is achieved through plain retrying.

Permanent network failure More often than not, a resource is simply not
persisted at the place where the catalog told us to look for it. HTTP has a
special status code for that situation: 404 “Not Found.” That is a sure-fire
sign that this distribution is impossible to materialize.26 Scraping can, under
certain circumstances outlined in Section 6.6, rectify erroneous references.

Content discrepancies Every distribution carries information about which
format it is composed in. Human creativity seems umlimited in terms of
their interpretation of RFC 2046

27; files contain wholly different contents than
advertised every now and then (f.ex. when they are transparently compressed).
Mimetype guessing as described in Section 6.2 can be used to ameliorate that
kind of failure.

Recoverable errors Partial corruption of a file such as encoding errors can
destroy points of information. In simpler file formats skipping that particular
area can restore a sane state.28 Chunking is, despite other reasons outlined in
6.5, a good middleground between performance and coverage.

Incompatibilities In the spirit of content discrepancies, there is a lot of lee-
way for interpretation in all areas of Semantic Web standards. Particular
programs produce output which is not suitable for general consumption by
other standards-adhering parties. The lacking popularity of SPARQL 1.1 (and
the inevitable rise of proprietary extensions to SPARQL 1.0) contribute to the

24For specific accounts of which sources provoked those errors, see Petrick [8, ch. 5.1].
25In fact, Estatwrap often replies 503 “Service Unavailable” when it hits the Google App

Engine quota after some 100 requests.
26For the LOD Cloud, we estimate that a third of all sources are affected.
27N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two: Media

Types. IETF Draft Standard. RFC 2046. Internet Engineering Task Force, Nov. 1996. url:
http://www.ietf.org/rfc/rfc2046.txt.

28This works, for example, with the N-Triples format where every item is delimited by a
newline character. Recovering a sane parser state after a hiccup in XML files in hardly
possible. We conjecture only those file formats parseable by regular languages are truly
automatically recoverable.
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unlevel landscape. Contributing patches29,30,31 or, for the time being, monkey-
patching/forking help overcome these obstacles.

Fatal errors For a certain class of errors there is just no sane technical solution.
Some instances of content discrepancies fall in here: If no amount of fairy
dust could ever detect a certain file format we are lost. Errors in XML files are
often fatal as restoring parser state (or skipping— and detecting in the first
place —faulty blocks) is incredibly hard if not impossible.

6 optimizations

With the errors presented in the previous chapter in mind, we can come up
with several optimizations to the minimal working prototype introduced in
Section 4. Part of these optimizations are already implemented, others we
propose for future work.

6 .1 Concurrency
Waiting for a bunch of network operations to finish is an excellent fit for
concurrency.

Download 
thread 

Populate 
thread 
(Digest) 

Setup 

Figure 3: Program flow and synchronization points

We have parallelized the processing of individual datasets in the download
and population steps. Intertwined concurrency — i.e., downloading one distri-
bution, trying to populate it, downloading another one if it fails, and so forth
— is hard because it requires jumping between the two steps. That would call
for a task queue mechanism, dynamically enqueueing new operations as it
receives success/failure acknowledgements.

29Sesame bug SES-959 “RDF/XML parser fails on relative URIs in rdf:datatype for empty
nodes” (http://openrdf.org/issues/browse/SES-959)

30SES-1052 “HTTPRepository sends wrong binding prefix” (http://openrdf.org/issues/
browse/SES-1052)

31Silk merge request #34733 “Support latest SPARQL 1.1 update syntax” (http://assembla.
com/code/silk/git/reviews/34733)

11

http://openrdf.org/issues/browse/SES-959
http://openrdf.org/issues/browse/SES-1052
http://openrdf.org/issues/browse/SES-1052
http://assembla.com/code/silk/git/reviews/34733
http://assembla.com/code/silk/git/reviews/34733


Digestion could be separated from population as well. As statistics queries
only takes up a fraction of time, that would not be a very worthwhile opti-
mization and can well be done right when the repository has been populated.

6 .2 Mimetype guessing
As described in Section 5, a third of all distributions carry a wrong format
tag. Upon closer look, it turns out that they are only half-way wrong: The
distributions do contain files in that format but are transparently archived
and compressed.

In face of that discovery, we employ a mimetype guesser32 by default. Under
certain circumstances — i.e., when it fails entirely or does not recognize an
XML vocabulary — that decision can be overridden as shown in Algorithm 1

below.

Algorithm 1 Logic employed to override the guessed mimetype
Given: guessed f ormat, declared f ormat

Require: declared f ormat can be handled . do not download at all otherwise
if declared f ormat is not guessed f ormat then

if guessed f ormat can not be handled then . guessing failed, perhaps
fall back to declared f ormat

end if
if guessed f ormat is XML and declared f ormat is subtype of XML then

fall back to declared f ormat . eg. RDF/XML
end if

end if

6 .3 Data sparsity
If a dataset has multiple distributions, there are two possible semantics for
them. They could be (a) different serializations of the same information or (b)
multi-part uploads of distinct subsets from the pool of information33. In the
wild, we also have observed (c) both at the same time, where some files are
split into multiple distributions for volume reasons and others augment the
dataset.

Separating one set of distributions is easy: Metadata. These are usually34

tagged with the “meta” MIME type. We load these unconditionally.

32Such a program inspects the first few bytes of a file for magic numbers indicating the true file
type. If that fails, they usually fall back to the file extension.

33
14% of all LOD Cloud datasets have multi-part downloads.

34There are exceptions, though, where ontologies are tagged as RDF/XML files.
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application/vnd.ms-excel 

application/rdf+xml 

application/rdf+xml 

text/turtle 

application/json 

meta/rdfs 

mapping/owl 

Figure 4: Example mime types. Metadata is
grayed out, useless distributions
are faded out.

We have tried to come up with sensible
heuristics35 to distinguish cases (a) and
(b) but they all fall down at one dataset
or the other. Erroneous metadata kills of
those approaches entirely.

6 .4 Rate limiting
Services such as Estatwrap impose hard
quota limits on third parties. While incre-
mental runs of the tool are good enough
to eventually fetch all of the datasets,
techniques such as rate limiting and retry-
ing could be employed to automate those
multiple runs.

A distribution, if failed through a tran-
sient network error, could be appended
to the queue of tasks again. For down-
loads from mixed sites that would even-
tually help to download all distributions. If the queue becomes very short
(only few distributions left) or comprises only remotes from a single site, that
would not help but anger the remote end because we are consistently hitting
their quota limit.

For such situations, we could employ rate limiting to increase the time be-
tween two download attempts from a single site, f.ex. in exponential amounts
of time.

6 .5 Chunking
Data tends to break at seemingly unpredictable places. We could try to come
up with contrived tactics trying to repair every possible bit of the files. We
propose a simpler technique: Chunking.

For NTriples36, we can accurately predict that every triple ends with a
newline characters.37 If the parser reports a fatal error, we can certainly contain

35 • Load distributions by priority, until one mimetype succeeds in its entirety.
• Select the majority mimetype.
• Peek into distributions to spot if they represent the same data.

36Jan Grant and Dave Beckett. RDF Test Cases. W3C Recommendation. World Wide Web
Consortium, Feb. 2004. url: http://www.w3.org/TR/rdf-testcases/#ntriples.

37Actually, every triple ends with a dot and a newline characters but the dot could already
be part of the broken data. We did not observe any cases where newline characters where
missing entirely.
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the failure to any position between the last and the next newline character; all
sibling triples are unaffected.

With that in mind there are now two different implementation strategies:
� Spoon-feed lines individually. This way, we can use the existing parser

unmodified. For speed reasons, multiple lines could also be aggregated
into larger blocks. That would save the repeated call overhead but loses
more triples in case of an error. Blocks can also be distributed to multiple
workers.

� Ignore erroneous lines. The parser needs to be changed to stop bailing
at every single error, demoting syntax errors from fatal errors to normal
errors. It drops only affected lines and neatly contains the error.

Sesame’s Native Store is a pathological case in favor of the first approach: It
queues up transactions until commit and keeps grinding the machine. Explicit
commit points after every block, say 1K, help deflating that queue.

Chunking does not work for NTriples only. N3 and Turtle, as supersets
of the NTriples format, could be made to work with slight modifications. A
naïve implementation probably requires dot-newline as a separator because
the subject context could be messed up otherwise.

6 .6 Scraping
We have surveyed those distributions failing with a permanent network failure
on how they could be recovered from existing metadata. In 28% of the cases,
scraping the parent directory of the declared endpoint linked to the file in
demand.

We did ultimately reject this optimization because it does not improve
the situation much in absolute numbers and a clean solution involves the
metadata maintainers getting their act together.

6 .7 Data staleness
The tool is lazy by default in multiple places: Downloads do not override exist-
ing files, nor are they even attempted if a remote already has a corresponding
dump. Population does not take place if it has already been successful, too.

This particular behaviour does not fit datasets with no versioning strategy
such as Eurostat, Worldbank and Data.gov: Updates are just brought into exist-
ing distributions. Downloaded files might thus contain outdated information.
We have provided hooks38 which can force re-downloading and re-parsing of
distributions.

38A forceDownload and a forcePopulate flag in the Object-oriented interface.
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7 results

Eurostat and Worldbank are very homogeneous catalogs: If you succeed man-
aging a single dataset’s lifecycle, you can easily replicate that procedure for
others — it is all or nothing. Except for deprecated datasets, metadata was
accurate; content discrepancies do not occur if all you have is but one file
format. In the limits of our quota constraints, we have full coverage for both
catalogs.

As presented in Petrick [8], we can materialize roughly a third of the LOD
Cloud. Mimetype guessing proved to be worth its salt and rectified all content
discrepancies present. The LOD Cloud, to be fair, is already covered by two
thirds with SPARQL endpoints from its vendors though.

Data.gov includes many distributions in non-machine-readable formats. We
succeeded to load roughly 30G of data from almost 300 different datasets.

Especially on single-core machines those processes are painfully slow; a
single dataset can take up to a day to be handled completely.

8 closing remarks

Our findings match those surveyed by Socrata in 2010
39, where half of all de-

velopers found data to be in unusable formats and two thirds of all developers
stated data is not easily accessible. Especially heterogeneous catalogs have
difficulties maintaining metadata quality and would do good with enforcing
some kind of quality assurance.

We have presented a tool which lays the foundation for working with Open
Data at large. We can cope with homogeneous sources just fine and discussed
strategies to enhance coverage for heterogeneous ones as well.
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a mentioned technology

CKAN http://ckan.org/
Socrata http://socrata.com/
Sesame http://openrdf.org/

Jena http://jena.apache.org
Sesame RDBMS Sail http://openrdf.org/doc/sesame2/api/org/

openrdf/sail/rdbms/RdbmsProvider.html
Jena SDB http://jena.apache.org/documentation/

sdb/index.html
Virtuoso http://virtuoso.openlinksw.com

N-Triples http://w3.org/2001/sw/RDFCore/ntriples/
RDF/XML http://w3.org/TR/REC-rdf-syntax/

Sesame Native http://openrdf.org/doc/api/org/
openrdf/sesame/sailimpl/nativerdf/
NativeRdfRepository.html

OWLIM http://ontotext.com/owlim/
Sesame Server http://openrdf.org/doc/sesame2/users/

ch06.html
Tomcat http://tomcat.apache.org/

Information Workbench http://fluidops.com/
information-workbench/

dpm http://okfn.org/projects/datapkg/
LOD Cache http://lod.openlinksw.com

Silk http://www4.wiwiss.fu-berlin.de/bizer/
silk/

Rio http://openrdf.org/doc/rio/api/
overview-summary.html

Commons Compress http://commons.apache.org/compress
JSON in Java http://json.org/java/

b ontology

@prefix dcat: <http://www.w3.org/ns/dcat#>.
@prefix void: <http://rdfs.org/ns/void#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
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@prefix : <http://data.fluidops.net/resource/>.

:Ontology
rdf:type owl:Ontology;
dcterms:title "Schema for Datasets and Distributions";
dcterms:creator :Team;
dcterms:modified "2012-02-29"^xsd:date;
foaf:homepage <http://data.fluidops.net/>;
owl:imports void:, dcat:. # importing DCAT and VoID

dcat:Catalog owl:equivalentClass [
rdf:type owl:Class;
rdfs:isDefinedBy :Ontology;
owl:intersectionOf (

[rdf:type owl:Restriction;
owl:onProperty rdfs:label;
owl:someValuesFrom rdf:Literal] # at least one rdfs:label

[rdf:type owl:Restriction;
owl:onProperty dcat:dataset;
owl:someValuesFrom dcat:Dataset] # at least one dcat:dataset

)
].

dcat:Dataset owl:equivalentClass [
rdf:type owl:Class;
rdfs:isDefinedBy :Ontology;
owl:intersectionOf (

[rdf:type owl:Restriction;
owl:onProperty rdfs:label;
owl:someValuesFrom rdf:Literal] # at least one rdfs:label

[rdf:type owl:Restriction;
owl:onProperty foaf:homepage;
owl:someValuesFrom foaf:Document] # at least one foaf:homepage

[rdf:type owl:Restriction;
owl:onProperty dcterms:creator;
owl:someValuesFrom foaf:Agent] # at least one dcterms:creator

[rdf:type owl:Restriction;
owl:onProperty dcat:distribution;
owl:someValuesFrom dcat:Distribution] # at least one dcat:distribution

[rdf:type owl:Restriction;
owl:onProperty dcat:distribution;
owl:someValuesFrom dcat:Distribution] # at least one dcat:distribution

[rdf:type owl:Restriction;
owl:onProperty [owl:inverseOf dcat:dataset];
owl:someValuesFrom dcat:Catalog] # at least one associated dcat:Catalog

)
].

void:Dataset owl:equivalentClass dcat:Dataset.

dcat:Distribution owl:equivalentClass [
rdf:type owl:Class;
rdfs:isDefinedBy :Ontology;
owl:intersectionOf (
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[rdf:type owl:Restriction;
owl:onProperty rdfs:label;
owl:someValuesFrom rdf:Literal] # at least one rdfs:label

[rdf:type owl:Restriction;
owl:onProperty dcat:accessUrl;
owl:someValuesFrom rdfs:Resource] # at least one dcat:accessUrl
# overriding the spec’d rdfs:Literal

[rdf:type owl:Restriction;
owl:onProperty dcterms:format;
owl:someValuesFrom dcterms:MediaType] # at least one dcterms:format
# narrowing down the spec’d dcterms:MediaTypeOrExtent

)
].
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